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1. Introduction 3. Methods (cont’d)
e Accurate localization in planetary surface robotics is essential for Dataset Generation: Public Dataset and Code:
navigation, path planning, and science objectives. e A virtual rover camera was spawned at distinct random locations e We produced a publicly available synthetic Lunar dataset and
e On Earth, absolute localization can be readily achieved via satellite (N~600,000) throughout the simulated environment, capturing open source code for processing, training, and benchmarking
navigation (e.g., GPS). However, such systems are unavailable on surface-perspective images in the 4 cardinal directions as well as localization algorithms!¥. The dataset contains 2.4+ million
other planetary bodies such as the Moon or Mars. the corresponding ground truth orbital map. surface-perspective images at 600,000+ distinct locations split

among the training, validating, and testing zones.

e Current methods rely on time- and labor-intensive human visual
matching of surface perspective features with satellite images.
Relative localization via visual and inertial odometry accumulate

errors over time and lead to inconsistencies. PSurfaCt§ 2.42x10°  90°x50.6° FoV = 1920 x 1080 px -
. . erspective
‘ Thdus’ at?eth"d_t,that can hq”'Ck'y’ ?”tog‘at'cal'yt’) a”‘:,tafcuﬁte'y Dataset Processing: Reprojection  6.06x10°  50mx50m  1000x 1000 px 224 x 224 px
reduce the position search space is of great benefit to future L . . .
P . O SPass 9 1] e Each set of 4 surface perspective images was then reprojected into Orbital 6.06 x 10° 50mx50m 1000 x 1000 px = 224 x 224 px
planetary exploration missions. This project™ presents a new an approximate aerial view using rover camera properties and Ground Truth
approach to localizing planetary rovers: training an artificial PP . J Prop D
: : assuming that the terrain is locally flat. Localization:
neural network to match surface-perspective imagery to _Aerial R t e The reprojection is compared against an array of candidate
- - erla e ro ec IOI‘\ i
corresponding satellite maps. ’ T

locations via a sliding window over any given orbital map.
PLaNNet calculates probabilities of a match with each candidate.
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Simulated Environment:

e A simulated environment was used to generate a dataset adequate
In size for training a deep neural network.

e The reprojection is paired with an orbital map of the same location
(matching) or one from a different (non-matching) location with
50/50 probability, downsampled, and fed into the neural network.

Neural Network:

e The synthetic Lunar surface environment was assembled in Unreal
Engine 4 using MoonLandscape v3.05.

e Distinct zones were set for training, validating, and testing.

e EXxperiments using random locations within testing zone:

- e PLaNNet (Planetary Localization Neural Network), a Siamese o 50 locations in (300m)? subregion (3600 candidates)

. neural network, was trained to classify pairs of reprojections and o 300 locations in full (1.05km)? testing zone (40401 candidates)
Training | orbital maps as matching or non-matching: e In general, PLaNNet returns a location within 5m of ground truth
o Each image enters a pre-trained ResNet-50 feature extractor from the top 10% inferences from available candidate regions
E o The feature vectors are concatenated, fed into a 256-neuron fully (i.e., 90% reduction of search space). It performs >2x better

8 connected layer (30% dropout) to produce the final match/ than standard computer vision benchmarks (SAD/SSD/random).

no-match logits vector, and softmax is applied to produce the

match/no-match probability distribution for a pair of inputs. Conclusions: This proof-of-concept demonstrates promising

capabilities for neural network approaches to absolute localization in
remote planetary surface environments. Work is in progress to
Include stereo camera depth information and new architectures.
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